506 research outputs found

    Scalar leptoquarks and the rare B meson decays

    Full text link
    We study some rare decays of BB meson involving the quark level transition b→ql+l−(q=d,s)b \to q l^+l^- (q=d,s) in the scalar leptoquark model. We constrain the leptoquark parameter space using the recently measured branching ratios of Bs,d→μ+μ−B_{s,d} \to \mu^+ \mu^- processes. Using such parameters, we obtain the branching ratios, direct CP violation parameters and isospin asymmetries in B→Kμ+μ−B \to K \mu^+ \mu^- and B→πμ+μ−B \to \pi \mu^+ \mu^- processes. We also obtain the branching ratios for some lepton flavour violating decays B→li+lj−B \to l_i^+ l_j^-. We find that the various anomalies associated with the isospin asymmetries of B→Kμ+μ−B \to K \mu^+ \mu^- process can be explained in the scalar leptoquark model.Comment: 28 pages, 7 figures. typos corrected, to appear in Phys. Rev.

    Leptogenesis as the origin of matter

    Full text link
    We explore in some detail the hypothesis that the generation of a primordial lepton-antilepton asymmetry (Leptogenesis) early on in the history of the Universe is the root cause for the origin of matter. After explaining the theoretical conditions for producing a matter-antimatter asymmetry in the Universe we detail how, through sphaleron processes, it is possible to transmute a lepton asymmetry -- or, more precisely, a (B-L)-asymmetry -- into a baryon asymmetry. Because Leptogenesis depends in detail on properties of the neutrino spectrum, we review briefly existing experimental information on neutrinos as well as the seesaw mechanism, which offers a theoretical understanding of why neutrinos are so light. The bulk of the review is devoted to a discussion of thermal Leptogenesis and we show that for the neutrino spectrum suggested by oscillation experiments one obtains the observed value for the baryon to photon density ratio in the Universe, independently of any initial boundary conditions. In the latter part of the review we consider how well Leptogenesis fits with particle physics models of dark matter. Although axionic dark matter and Leptogenesis can be very naturally linked, there is a potential clash between Leptogenesis and models of supersymmetric dark matter because the high temperature needed for Leptogenesis leads to an overproduction of gravitinos, which alter the standard predictions of Big Bang Nucleosynthesis. This problem can be resolved, but it constrains the supersymmetric spectrum at low energies and the nature of the lightest supersymmetric particle (LSP). Finally, as an illustration of possible other options for the origin of matter, we discuss the possibility that Leptogenesis may occur as a result of non-thermal processes.Comment: 53 pages, minor corrections, one figure and references added, matches published versio

    A novel and economical explanation for SM fermion masses and mixings

    Get PDF

    A systematic review of physiological reactivity to stimuli in autism

    Get PDF
    Objective: The prevalence of abnormal behavioural responses to a variety of stimuli among individuals with autism has led researchers to examine whether physiological reactivity is typical in this population. The current paper reviewed studies assessing physiological reactivity to sensory, social and emotional, and stressor stimuli in individuals with autism. Methods: Systematic searches of electronic databases identified 57 studies that met our inclusion criteria. A novel measure of methodological quality suitable for use with non-randomised, non-interventional, psychophysiological studies was also developed and applied. Results: Individuals with autism were found to respond differently than typically developing controls in 78.6%, 66.7%, and 71.4% of sensory, social and emotional, and stressor stimulus classes, respectively. Conclusions: Individual differences in physiological reactivity are clearly present in autism, suggesting additional research is needed to determine the variables relating to physiological reactivity among those with ASD and to examine the possibility of physiological subtype responders in this population

    Beyond MFV in family symmetry theories of fermion masses

    Get PDF
    Minimal Flavour Violation (MFV) postulates that the only source of flavour changing neutral currents and CP violation, as in the Standard Model, is the CKM matrix. However it does not address the origin of fermion masses and mixing and models that do usually have a structure that goes well beyond the MFV framework. In this paper we compare the MFV predictions with those obtained in models based on spontaneously broken (horizontal) family symmetries, both Abelian and non-Abelian. The generic suppression of flavour changing processes in these models turns out to be weaker than in the MFV hypothesis. Despite this, in the supersymmetric case, the suppression may still be consistent with a solution to the hierarchy problem, with masses of superpartners below 1 TeV. A comparison of FCNC and CP violation in processes involving a variety of different family quantum numbers should be able to distinguish between various family symmetry models and models satisfying the MFV hypothesis.Comment: 34 pages, no figure

    Likelihood analysis of the pMSSM11 in light of LHC 13-TeV data

    Get PDF
    We use MasterCode to perform a frequentist analysis of the constraints on a phenomenological MSSM model with 11 parameters, the pMSSM11, including constraints from ∼36 /fb of LHC data at 13 TeV and PICO, XENON1T and PandaX-II searches for dark matter scattering, as well as previous accelerator and astrophysical measurements, presenting fits both with and without the (g−2)μ constraint. The pMSSM11 is specified by the following parameters: 3 gaugino masses M1,2,3 , a common mass for the first-and second-generation squarks mq~ and a distinct third-generation squark mass mq~3 , a common mass for the first-and second-generation sleptons mℓ~ and a distinct third-generation slepton mass mτ~ , a common trilinear mixing parameter A, the Higgs mixing parameter μ , the pseudoscalar Higgs mass MA and tanβ . In the fit including (g−2)μ , a Bino-like χ~01 is preferred, whereas a Higgsino-like χ~01 is mildly favoured when the (g−2)μ constraint is dropped. We identify the mechanisms that operate in different regions of the pMSSM11 parameter space to bring the relic density of the lightest neutralino, χ~01 , into the range indicated by cosmological data. In the fit including (g−2)μ , coannihilations with χ~02 and the Wino-like χ~±1 or with nearly-degenerate first- and second-generation sleptons are active, whereas coannihilations with the χ~02 and the Higgsino-like χ~±1 or with first- and second-generation squarks may be important when the (g−2)μ constraint is dropped. In the two cases, we present χ2 functions in two-dimensional mass planes as well as their one-dimensional profile projections and best-fit spectra. Prospects remain for discovering strongly-interacting sparticles at the LHC, in both the scenarios with and without the (g−2)μ constraint, as well as for discovering electroweakly-interacting sparticles at a future linear e+e− collider such as the ILC or CLIC

    A Geometric Approach to CP Violation: Applications to the MCPMFV SUSY Model

    Get PDF
    We analyze the constraints imposed by experimental upper limits on electric dipole moments (EDMs) within the Maximally CP- and Minimally Flavour-Violating (MCPMFV) version of the MSSM. Since the MCPMFV scenario has 6 non-standard CP-violating phases, in addition to the CP-odd QCD vacuum phase \theta_QCD, cancellations may occur among the CP-violating contributions to the three measured EDMs, those of the Thallium, neutron and Mercury, leaving open the possibility of relatively large values of the other CP-violating observables. We develop a novel geometric method that uses the small-phase approximation as a starting point, takes the existing EDM constraints into account, and enables us to find maximal values of other CP-violating observables, such as the EDMs of the Deuteron and muon, the CP-violating asymmetry in b --> s \gamma decay, and the B_s mixing phase. We apply this geometric method to provide upper limits on these observables within specific benchmark supersymmetric scenarios, including extensions that allow for a non-zero \theta_QCD.Comment: 34 pages, 16 eps figures, to appear in JHE

    Light Higgsino from Axion Dark Radiation

    Full text link
    The recent observations imply that there is an extra relativistic degree of freedom coined dark radiation. We argue that the QCD axion is a plausible candidate for the dark radiation, not only because of its extremely small mass, but also because in the supersymmetric extension of the Peccei-Quinn mechanism the saxion tends to dominate the Universe and decays into axions with a sizable branching fraction. We show that the Higgsino mixing parameter mu is bounded from above when the axions produced at the saxion decays constitute the dark radiation: mu \lesssim 300 GeV for a saxion lighter than 2m_W, and mu less than the saxion mass otherwise. Interestingly, the Higgsino can be light enough to be within the reach of LHC and/or ILC even when the other superparticles are heavy with mass about 1 TeV or higher. We also estimate the abundance of axino produced by the decays of Higgsino and saxion.Comment: 18 pages, 1 figure; published in JHE

    Light Higgsino in Heavy Gravitino Scenario with Successful Electroweak Symmetry Breaking

    Full text link
    We consider, in the context of the minimal supersymmetric standard model, the case where the gravitino weighs 10^6 GeV or more, which is preferred by various cosmological difficulties associated with unstable gravitinos. Despite the large Higgs mixing parameter B together with the little hierarchy to other soft supersymmetry breaking masses, a light higgsino with an electroweak scale mass leads to successful electroweak symmetry breaking, at the price of fine-tuning the higgsino mixing mu parameter. Furthermore the light higgsinos produced at the decays of gravitinos can constitute the dark matter of the universe. The heavy squark mass spectrum of O(10^4) GeV can increase the Higgs boson mass to about 125 GeV or higher.Comment: 13 pages, 3 figures; v2: version to appear in JHE

    Bridging flavour violation and leptogenesis in SU(3) family models

    Full text link
    We reconsider basic, in the sense of minimal field content, Pati-Salam x SU(3) family models which make use of the Type I see-saw mechanism to reproduce the observed mixing and mass spectrum in the neutrino sector. The goal of this is to achieve the observed baryon asymmetry through the thermal decay of the lightest right-handed neutrino and at the same time to be consistent with the expected experimental lepton flavour violation sensitivity. This kind of models have been previously considered but it was not possible to achieve a compatibility among all of the ingredients mentioned above. We describe then how different SU(3) messengers, the heavy fields that decouple and produce the right form of the Yukawa couplings together with the scalars breaking the SU(3) symmetry, can lead to different Yukawa couplings. This in turn implies different consequences for flavour violation couplings and conditions for realizing the right amount of baryon asymmetry through the decay of the lightest right-handed neutrino. Also a highlight of the present work is a new fit of the Yukawa textures traditionally embedded in SU(3) family models.Comment: 26 pages, 5 figures, Some typos correcte
    • …
    corecore